4.7 Article

Exploring a novel HE image segmentation technique for glioblastoma: A hybrid slime mould and differential evolution approach

期刊

COMPUTERS IN BIOLOGY AND MEDICINE
卷 168, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.compbiomed.2023.107653

关键词

Multi-threshold image segmentation; Kapur's entropy; Brain glioma; Slime mould algorithm; Differential evolution

向作者/读者索取更多资源

In this paper, a BDSMA-based image segmentation method is proposed, which improves the limitations of the original algorithm by combining SMA with DE and introducing a cooperative mixing model. The experimental results demonstrate the superiority of this method in terms of convergence speed and precision compared to other methods, and its successful application to brain tumor medical images.
Glioblastoma is a primary brain tumor with high incidence and mortality rates, posing a significant threat to human health. It is crucial to provide necessary diagnostic assistance for its management. Among them, Multi-threshold Image Segmentation (MIS) is considered the most efficient and intuitive method in image processing. In recent years, many scholars have combined different metaheuristic algorithms with MIS to improve the quality of Image Segmentation (IS). Slime Mould Algorithm (SMA) is a metaheuristic approach inspired by the foraging behavior of slime mould populations in nature. In this investigation, we introduce a hybridized variant named BDSMA, aimed at overcoming the inherent limitations of the original algorithm. These limitations encompass inadequate exploitation capacity and a tendency to converge prematurely towards local optima when dealing with complex multidimensional problems. To bolster the algorithm's optimization prowess, we integrate the original algorithm with a robust exploitative operator called Differential Evolution (DE). Additionally, we introduce a strategy for handling solutions that surpass boundaries. The incorporation of an advanced cooperative mixing model accelerates the convergence of BDSMA, refining its precision and preventing it from becoming trapped in local optima. To substantiate the effectiveness of our proposed approach, we conduct a comprehensive series of comparative experiments involving 30 benchmark functions. The results of these experiments demonstrate the superiority of our method in terms of both convergence speed and precision. Moreover, within this study, we propose a MIS technique. This technique is subsequently employed to conduct experiments on IS at both low and high threshold levels. The effectiveness of the BDSMA-based MIS technique is further showcased through its successful application to the medical image of brain glioblastoma. The evaluation of these experimental outcomes, utilizing image quality metrics, conclusively underscores the exceptional efficacy of the algorithm we have put forth.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据