4.7 Article

Probabilistic back analysis of rainfall-induced slope failure considering slope survival records from past rainfall events

期刊

COMPUTERS AND GEOTECHNICS
卷 159, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compgeo.2023.105436

关键词

Back analysis; Rainfall -induced landslide; Probabilistic methods; Slope stability

向作者/读者索取更多资源

This paper proposes a novel probabilistic back analysis method that explicitly models the rainfall triggering mechanism for a slope failure. By incorporating both slope failure and survival records, uncertainties in soil strength and hydraulic parameters can be effectively reduced.
Many rainfall-induced landslides occur on slopes that have limited, or even no, site investigation data before failure. Probabilistic back analysis of slope failure provides an effective tool to back analyze possible pre-failure soil parameters, thus gaining insights into the mechanism of slope failure. For a slope failure induced by rainfall, the actual factor of safety (FS) is time-variant when time-variant rainfall and infiltration are explicitly modeled. This study proposes a novel probabilistic back analysis method that models explicitly the rainfall triggering mechanism for a rainfall-induced slope failure. Unlike existing methods that are based on a constant FS = 1, the proposed method utilizes FS inequality information for probabilistic back analysis, including slope failure record with FS < 1 and slope survival records from past rainfall events with FS > 1. The proposed method is suitable for high-dimensional problems when soil hydraulic properties are also back analyzed. The proposed method converges to the conventional methods with FS = 1 when the time span of slope failure is narrowed down to a few hours and slope survival records are ignored. Incorporating both slope failure and survival records effectively reduces uncertainties in soil strength and hydraulic parameters.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据