4.7 Article

A compact yet flexible design space for large-scale nonperiodic 3D woven composites based on a weighted game for generating candidate tow architectures

期刊

COMPUTER-AIDED DESIGN
卷 167, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.cad.2023.103637

关键词

3D woven/textile composite; Combinatorial design; Game theory; Integral design; Virtual specimen

向作者/读者索取更多资源

Three-dimensional non-periodic woven composite preforms have great design flexibility, but the design space is too large. This paper proposes a Background Vector Method (BVM) for generating candidate designs that can adapt to local architecture and global design goals while ensuring fabricability. Examples are provided to illustrate the design scope and speed of the BVM, as well as pathways for incorporating it into optimization algorithms.
Three-dimensional non-periodic woven composite preforms have sufficient design flexibility that tows can be aligned along principal loading paths even in shaped structural components with detailed local features. While this promises competitive performance, the feasible design space is combinatorially large, far beyond exhaustive search. Seeking a design space that is compact and easily searched yet can span the full potential of 3D weaving, we propose a method for generating candidate designs called the Background Vector Method (BVM) which treats weaving tows as agents in a game competing to match background vectors derived from different design requirements. The BVM generates candidate designs that adapt local architecture to global design goals by adjusting scalar weights. A manufacturing-based parameterization assures fabricability. The scope of possible designs and the speed of the BVM are illustrated by re-creating common periodic 3D weaving patterns and novel complex non-periodic architectures, with a route demonstrated to forming cavities, ducts, and other open volumes. How the BVM might be incorporated within an optimization algorithm is outlined and pathways are shown for systematically enlarging the design space as individual design problems may require.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据