4.5 Article

Incorporation of indium into GaN layers in the context of MOVPE thermodynamics and growth - Ab initio studies

期刊

COMPUTATIONAL MATERIALS SCIENCE
卷 230, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.commatsci.2023.112489

关键词

A1 Computer simulation; A1 Surface processes; A3 Metalorganic vapor phase epitaxy; B1 Nitrides; B2 Semiconducting III-V materials

向作者/读者索取更多资源

Indium incorporation on the GaN surface was analyzed in the context of InGaN growth by MOVPE. The results showed that the adsorption energy strongly depends on the electronic properties of the surface, and the increase in hydrogen pressure leads to an increase in the equilibrium pressures of indium, resulting in reduced indium incorporation.
Indium incorporation on the GaN surface (0001) has been analyzed in the context of InGaN growth by Metal Organic Vapor Phase Epitaxy (MOVPE). To understand phenomena at the atomic level, calculations based on Density Functional Theory (DFT) and thermodynamic analysis of the surface processes have been performed. The considerations are limited to the terrace on GaN (0001) surface, covered fully by NH3/NH2 species. The ab initio results indicate that the adsorption energy strongly depends on the electronic properties of the surface. The adsorption energy varies from EDFTads = -10.0eV for fully NH2 covered to EDFTads = -3.0eV for mixed 0.69 NH2 + 0.31 NH3 covered surface. This change is related to Fermi level position moved from within valence band, across the bandgap, up to within conduction band. The shift in Fermi energy impacts the energy gained during adsorption due to electron occupation of surface states. Furthermore, a comprehensive thermodynamic analysis was conducted, revealing an additional, albeit smaller, contribution from the vibrational degrees of freedom to free energy. The combined effect of these factors leads to an increase in the equilibrium pressures of indium related to the increase in hydrogen pressure, which correlates with high coverage by ammonia molecules. The results demonstrate that the significant reduction in indium incorporation into InGaN layers during MOVPE growth under conditions of low hydrogen concentration in the vapor can be attributed to the influence of hydrogen on In adsorption processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据