4.7 Article

A novel pultrusion method and axial compression behavior of 3-D braiding-winding-pultrusion composite tubes at different temperatures

期刊

COMPOSITES SCIENCE AND TECHNOLOGY
卷 245, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compscitech.2023.110340

关键词

Braiding-winding-pultrusion composite; (BWPC) tubes; Axial compression; Temperature effect; Physical features; Energy absorption

向作者/读者索取更多资源

The 3-D carbon fiber reinforced resin matrix composite tubes were designed and formed using a novel braiding-winding-pultrusion processing technique. The effects of temperature environments on the mechanical responses and damage behaviors of the composite tubes were investigated, and it was found that the structural design of the tubes directly affects their axial bearing capacity.
The 3-D carbon fiber reinforced resin matrix composite tubes were designed and formed via a type of novel braiding-winding-pultrusion processing technique. The effects of temperature environments (lower, normal and high temperature) on the axial compressive mechanical responses and damage behaviors of novel 3-D braiding-winding-pultrusion composite (BWPC) tubes were investigated. It was found that the BWPC tubes combined with three forming process features has a complex compression failure mode. The CT image was show that the fiber damage methods of braiding, winding and pultrusion layer were different, and the structural design of the tubes directly affects the axial bearing capacity. The axial quasi-static compression failures of tubes were the flowering failure of petals at one end. The fiber fracture and fiber block falling off was more apparent when under the lower temperature environment. The research also indicated that, when the temperature exceeds 180 degrees C, the resin softening and stratification will be destroyed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据