4.7 Article

Mechanical properties and failure mechanisms of all-CFRP corrugated sandwich truncated cone

期刊

COMPOSITES PART B-ENGINEERING
卷 268, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compositesb.2023.111090

关键词

CFRP; Sandwich cone; Corrugated core; Failure mechanisms

向作者/读者索取更多资源

This work proposes a design approach and manufacturing method for carbon fiber reinforced plastic (CFRP) corrugated sandwich truncated cones (CSTC) to improve their anti-debonding ability and ensure reliability. The study establishes theoretical models for CSTCs' stiffness and failure modes, which are verified through experiments and finite element analysis (FEA). The research reveals the effect of geometric parameters on failure modes and performs an optimal design for CSTC structures. The findings have significant implications for the design and application of lightweight CSTCs in constructions, such as launch vehicle adapters.
Cone-shaped sandwich structures are extensively employed in various fields due to their excellent bearing efficiency and designability. In this work, the design approach and integrated manufacturing method for the carbon fiber reinforced plastic (CFRP) corrugated sandwich truncated cone (CSTC) are proposed to improve the anti-debonding ability and ensure the reliability of the sandwich cone. First, the theoretical model for the stiffness of the CSTC is derived, in which the conservative prediction and the upper limit considering the fiber orientation of the cone are derived. The multiple failure modes of the CSTC under axial compression are theoretically established. Then, the failure mechanism map of the CSTC is established to forecast the possible failure modes. The typical failure modes of local buckling, face fracture, and core buckling are captured by experiments and finite element analysis (FEA). The theoretical model of the stiffness and failure modes is verified by the experiments and FEA. The effect of the semi-vertex angle and circumferential cell number on the failure modes is revealed. Furthermore, a more comprehensive failure mechanism map is generated by altering the geometric parameters of the CSTC. The failure modes of Euler buckling and global buckling are acquired by the comprehensive failure mechanism map and verified by FEA. Finally, the optimum design of the CSTC structure is performed. The results show that the failure mode of face fracture has the best bearing efficiency. This research provides a solid foundation for designing and applying lightweight CSTCs in constructions, such as the adapter of launch vehicles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据