4.7 Article

Computational modeling of micro curing residual stress evolution and out-of-plane tensile damage behavior in fiber-reinforced composites

期刊

COMPOSITE STRUCTURES
卷 322, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.compstruct.2023.117370

关键词

Polymer-matrix composites (PMCs); Curing residual stress; Transverse damage behavior; Finite element analysis; Curing cycle

向作者/读者索取更多资源

This paper focuses on understanding the evolution mechanism of micro curing residual stress in medium-temperature cured composites (T700/7901) under out-of-plane tension and its impacts on mechanical responses. An integrated multi-scale framework is established to predict the development of micro residual stress during curing, and experimental and analytical methods are used to verify the model. The results reveal the evolution of micro curing residual stress and demonstrate the necessity of considering curing residual stress in designing and evaluating composites.
This paper focuses on revealing the evolution mechanism of micro curing residual stress and its impacts on the mechanical responses of medium-temperature cured composites (T700/7901) under out-of-plane tension. An integrated multi-scale framework is established, the macro-scale thermal-chemical and micro-scale stress-strain models are set up to predict the development of the micro residual stress during curing, and the obtained stress field is further employed as the initial boundary conditions in the micromechanical analysis to explore its effect qualitatively and quantitatively. Experimental and analytical methods are taken to verify and validate the current model. Besides, the impacts of different curing cycles on the micro residual stress and out-of-plane tensile strength are also discussed. The evolution of the micro curing residual stress in T700/7901 composites is intuitively revealed, and the results of the micromechanical model show that the out-of-plane tensile strength increases by nearly 14.4% due to the occurrence of the process-induced stress. Both the interfacial damage and matrix plastic deformation are delayed owing to the residual stress. The work builds the connection between the curing process and mechanical responses of unidirectional composites and demonstrates the necessity of considering curing residual stress in designing and evaluating composites.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据