4.7 Article

State of charge estimation for lithium-ion batteries based on a novel complex-order model

出版社

ELSEVIER
DOI: 10.1016/j.cnsns.2023.107365

关键词

Complex -order derivatives; Equivalent circuit model; Particle swarm optimization; Unscented Kalman filter

向作者/读者索取更多资源

In this paper, a novel complex-order equivalent circuit model (Co-ECM) is proposed for lithium-ion battery state of charge (SOC) estimation. The Co-ECM considers the nonlinear characteristics and temporal behavior of the system by using complex derivatives. Experimental results demonstrate that the Co-ECM achieves high accuracy in SOC estimation across different temperatures, and exhibits strong robustness against noisy information.
The accuracy of the battery model is decisive in model-based state of charge (SOC) estimation. In this paper, complex-order derivatives (CDs) are applied in the scope of battery modeling, parameter identification, and SOC estimation. Firstly, a novel complexorder equivalent circuit model (Co-ECM) for lithium-ion batteries, which considers an innovative complex-order constant phase element, is proposed. Secondly, the structure characteristics of the Co-ECM are analyzed, and a complex-order particle swarm optimization algorithm is developed to identify the Co-ECM parameters. Finally, a novel complex-order unscented Kalman filter is designed to estimate the battery SOC, while CDs capture the system past behavior and tackle the nonlinearities of the constant phase element. Also, the proposed Co-ECM is compared with two other alternatives (i.e., integer-order and fractional-order ECM) based on data from two battery test cycles at different temperatures. The results show that the new Co-ECM leads to SOC estimation accuracy higher than the traditional models over a wide range of temperature (0 degrees C, 25 degrees C and 45 degrees C), with root-mean-squared error (RMSE) and mean absolute error (MAE) less than 0.47% and 0.41%, respectively. Moreover, experiments with data polluted with artificial noise revealed that the proposed model has superior robustness against noisy information. The new Co-ECM is, thus, shown to be a prime option for battery SOC estimation.& COPY; 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据