4.7 Article

Measurements of the laminar burning velocities of small alkyl esters using the heat flux method: A comparative study

期刊

COMBUSTION AND FLAME
卷 255, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2023.112922

关键词

Methyl propionate; Methyl formate; Alkyl esters; Burning velocity; Heat flux method; Kinetic mechanism

向作者/读者索取更多资源

This study reviews the laminar burning velocity of small alkyl esters and presents new data for methyl propionate + air flames. It compares the burning velocity of different esters and assesses structure-reactivity trends. Furthermore, it expands the authors' detailed kinetic mechanism and discusses the reactions controlling flame propagation.
Consistent datasets of the laminar burning velocity, LBV, for homologous fuels are indispensable for the elucidation of the structure-reactivity trends and the development and validation of pertinent detailed kinetic models. In the present study, all available LBV measurements for small alkyl esters obtained using the heat flux method have been reviewed. New results of the LBV for methyl propionate + air flames employing this method have been acquired at atmospheric pressure and initial gas temperatures from 298 to 348 K over equivalence ratios, ɸ = 0.7-1.5. Earlier experimental data for alkyl esters scattered across non-archival reports were re-examined and corrected when necessary. To prove the validity of the correction, additional LBV measurements for methyl formate and methyl butanoate were performed as well, and successfully demonstrated the consistency of the data obtained using different installations over an extended period of time. Then, the LBV of different families, such as methyl esters of various acids, formates, and acetates, along with isomers, were compared and structure-reactivity trends were assessed. Furthermore, the detailed kinetic mechanism of the authors was expanded by the reactions of methyl propionate and successfully compared with the LBV measurements for methyl formate, methyl acetate, methyl propionate, and ethyl formate. Distinct reactions controlling their flame propagation were revealed using sensitivity analysis and the origin of their rate constants is briefly discussed.& COPY; 2023 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据