4.7 Article

Air-blast atomization and ignition of a kerosene spray in hot vitiated crossflow

期刊

COMBUSTION AND FLAME
卷 256, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.combustflame.2023.112915

关键词

Spray in vitiated crossflow; Kerosene; Air-blast atomization

向作者/读者索取更多资源

Increasing regulations on aviation pollutant emissions require rapid adoption of new combustion technologies. The concept of moderate or intense low-oxygen dilution (MILD) combustion has been investigated and shows promise. The MILD regime involves recirculating hot combustion products to increase reactant temperature, resulting in distributed reactions and lower flame temperatures.
Increasingly stringent regulations of pollutant emissions from aviation require rapid implementation of novel combustion technologies. Promising concepts based on moderate or intense low-oxygen dilution (MILD) combustion have been investigated in academia and industry. This MILD regime can be obtained from the recirculation of the hot vitiated combustion products to raise the temperature of the reactants, resulting in distributed reaction regions and lower flame temperatures. In the present work, we consider the air-blast atomization of a kerosene spray in crossflow, which enables efficient mixing between fuel and oxidizer. We investigate experimentally and numerically the effect of the spray air-to-liquid mass-flow ratio (ALR) variation on the reaction front and flame topology of a kerosene spray flame. The spray is injected transversely into a turbulent vitiated crossflow composed of the products of a lean CH4-H 2 flame. The spray flame thermal power is varied between 2.5 and 5 kW, along with the atomizer ALR between 2 and 6. The experimental characterization of the reaction zone is performed using OH* chemi-luminescence and OH and fuel planar laser-induced fluorescence (PLIF). The Large Eddy Simulations (LES) of the multiphase reactive flow provide good agreement with the experimental observations. Experiments and simulations show that the ALR governs mixing, resulting in different flame stabilization mechanisms and combustion regimes. Low ALR results in a relatively small jet-to-crossflow momentum ratio and a large spray Sauter mean diameter (SMD). A thick windward reaction region is formed due to inefficient shear layer mixing between the fuel spray and the crossflow. Meanwhile, the correspondingly large spray SMD leads to isolated penetration and localized combustion of fuel clusters. At high ALR, the higher pen-etration and the faster droplet evaporation due to the lower spray SMD result in an efficient entrainment-induced mixing between the two streams, forming more distributed reaction regions.& COPY; 2023 The Author(s). Published by Elsevier Inc. on behalf of The Combustion Institute. This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ )

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据