4.8 Article

Early Warning for the Electrolyzer: Monitoring CO2 Reduction via In-Line Electrochemical Impedance Spectroscopy

期刊

CHEMSUSCHEM
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.202300657

关键词

energy conversion; electrochemistry; carbon dioxide conversion; electrochemical impedance spectroscopy; electrocatalysis

向作者/读者索取更多资源

The stability of CO2RR electrolyzers remains a challenge. This study demonstrates the continuous monitoring of electrolyzers using real-time electrochemical impedance spectroscopy (EIS) analysis, identifying common failure modes and proposing a framework for predicting and preventing failures.
The electrochemical CO2 reduction reaction (CO2RR) to fuels and feedstocks presents an opportunity to decarbonize the chemical industry, and current electrolyzer performance levels approach commercial viability. However, stability remains below that required, in part because of the challenge of probing these electrolyzer systems in real time and the challenge of determining the root cause of failure. Failure can result from initial conditions (e. g., the over- or under-compression of the electrolyzer), gradual degradation of components (e. g., cathode or anode catalysts), the accumulation of products or by-products, or immediate changes such as the development of a hole in the membrane or a short circuit. Identifying and mitigating these assembly-related, gradual, and immediate failure modes would increase both electrolyzer lifetime and economic viability of CO2RR. We demonstrate the continuous monitoring of CO2RR electrolyzers during operation via non-disruptive, real-time electrochemical impedance spectroscopy (EIS) analysis. Using this technique, we characterise common failure modes - compression, salt formation, and membrane short circuits - and identify electrochemical parameter signatures for each. We further propose a framework to identify, predict, and prevent failures in CO2RR electrolyzers. This framework allowed for the prediction of anode degradation similar to 11 hours before other indicators such as selectivity or voltage.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据