4.8 Article

Production of 2,5-Furandicarboxylic Acid Methyl Esters from Pectin-Based Aldaric Acid: from Laboratory to Bench Scale

期刊

CHEMSUSCHEM
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cssc.202300732

关键词

green chemistry; heterogeneous catalysis; furanoics; renewable resources; scale-up

向作者/读者索取更多资源

This study successfully synthesized high yields of FDCA methyl esters and demonstrated the feasibility of the process through scale-up experiments. The results of this study contribute to the valorization of agricultural by-products into fully renewable polyesters.
2,5-Furandicarboxylic acid (FDCA) is one of the most attractive emerging renewable monomers, which has gained interest especially in polyester applications, such as the production of polyethylene furanoate (PEF). Recently, the attention has shifted towards FDCA esters due to their better solubility as well as the easier purification and polymerisation compared to FDCA. In our previous work, we reported the synthesis of FDCA butyl esters by dehydration of aldaric acids as stable intermediates. Here, we present the synthesis of FDCA methyl esters in high yields from pectin-based galactaric acid using a solid acid catalyst. The process enables high substrate concentrations (up to 20 wt %) giving up to 50 mol % FDCA methyl esters with total furancarboxylates yields of up to 90 mol %. The synthesis was successfully scaled up from gram-scale to kilogram-scale in batch reactors showing the feasibility of the process. The stability of the catalyst was tested in re-use experiments. Purification of the crude product by vacuum distillation and precipitation gave furan-2,5-dimethylcarboxylate with a 98 % purity. The synthesis and purification of pectin-based 2,5-furandicarboxylic acid methyl esters from gram-scale to kilogram-scale enables the valorisation of agricultural side streams into fully renewable polyesters.image

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据