4.5 Article

Ag-Doped Free-Standing 2D TiO2 Sheets: Electronic, Optical, Magnetic, and Self-Healing Behaviour

期刊

CHEMPHYSCHEM
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cphc.202300447

关键词

freestanding; 2D TiO2; doping; surface engineering; band gap

向作者/读者索取更多资源

This study reports the controlled synthesis of large-scale Ag-2D TiO2 sheets by manipulating the surface energy, and achieves tunable band gap with Ag doping, which is significant for visible light-sensitive films and device applications.
Beyond a critical doping level, Ag-2D TiO2 sheets (ATO) are deemed to be a flexible transparent conductor, useful for visible-range functional photonic/optoelectronic devices/sensors, sunlight-sensitive catalysis, and light-activated resistive switching. Due to the lack of control of surface energy which often leads to the formation of structural defects and even dimensionality crossover (2D to 0D) of materials during doping reaction, it is challenging to obtain ATO with a controlled doping level. Gauging the urgency, therefore we report the surface energy-controlled synthesis of ATO employing liquid phase exfoliation of TiO2 and subsequent hydrothermal Ag-doping in the presence of Hexamethylenetetramine (HMTA). Electron microscopy and atomic force microscopy reveal ATO sheets with large lateral dimensions. 6-fold, 4-fold, and strain-mediated crystallographic phases of 2D ATO have been revealed by high-resolution electron imaging. Successful tuning of the band gap down to similar to 2 eV with Ag doping up to similar to 10 % is obtained. Synthesized 2D ATO have been investigated for their electrical, optical, optoelectronic, photoluminescence, and ferromagnetic behaviour. Visible light-sensitive thermally/structurally robust semiconductor/conductor via tuneable doping will pave the way for their flexible as well as wearable device applications. Self-healing effect of AFM tip-generated mechanical stress has also been demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据