4.7 Article

Co-exposure of organophosphorus pesticides is associated with increased risk of type 2 diabetes mellitus in a Chinese population

期刊

CHEMOSPHERE
卷 332, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.chemosphere.2023.138865

关键词

Type 2 diabetes mellitus; Organophosphorus pesticides; Joint effect; Quantile g-computation; Bayesian kernel machine regression

向作者/读者索取更多资源

This study found that both individual and mixture exposure to organophosphorus pesticides (OPPs) were associated with an increased risk of type 2 diabetes mellitus (T2DM) and prediabetes (PDM). The findings suggest that OPPs may play an important role in the development of T2DM.
Objective: The epidemiological evidence of human exposure to organophosphorus pesticides (OPPs) with type 2 diabetes mellitus (T2DM) and prediabetes (PDM) is scarce. We aimed to examine the association of T2DM/PDM risk with single OPP exposure and multi-OPP co-exposure. Methods: Plasma levels of ten OPPs were measured using the gas chromatography-triple quadrupole mass spectrometry (GC-MS/MS) among 2734 subjects from the Henan Rural Cohort Study. We used generalized linear regression to estimate odds ratios (ORs) or beta with 95% confidence intervals (CIs), and constructed quantile g-computation and Bayesian kernel machine regression (BKMR) models to investigate the association of OPPs mixture with the risk of T2DM and PDM. Results: High detection rates ranged from 76.35% (isazophos) to 99.17% (malathion and methidathion) for all OPPs. Several plasma OPPs concentrations were in positive correlation with T2DM and PDM. Additionally, positive associations of several OPPs with fasting plasma glucose (FPG) values and glycosylated hemoglobin (HbA1c) levels were observed. In the quantile g-computation, we identified significantly positive associations between OPPs mixtures and T2DM as well as PDM, and fenthion had the greatest contribution for T2DM, followed by fenitrothion and cadusafos. As for PDM, the increased risk was largely explained by cadusafos, fenthion, and malathion. Furthermore, BKMR models suggested that co-exposure to OPPs was linked to an increased risk of T2DM and PDM. Conclusion: Our findings suggested that the individual and mixture of OPPs exposure were associated with an increased risk of T2DM and PDM, implying that OPPs might act an important role in the development of T2DM.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据