4.8 Article

Caged Colloids

期刊

CHEMISTRY OF MATERIALS
卷 35, 期 16, 页码 6357-6363

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.chemmater.3c01053

关键词

-

向作者/读者索取更多资源

Colloidal microcontainers, such as hollow capsules and colloidosomes, can be created through a self-assembly approach to encapsulate cargo particles within well-defined porous membranes or cages. The process involves camouflaging the cargo within a liquid matrix and forming densely packed shells around it. The self-standing cages are formed by fusing satellite particles, and the liquid matrix is then dissolved to trap the cargo. The porosity of the cages can be controlled by adjusting the fusion protocol. This technique has potential applications in transmembrane transport phenomena, such as delivering nanoparticles.
Colloidal microcontainers, such as hollow capsules andcolloidosomes,have a range of applications, including drug delivery, energy storage,and artificial protocells. In this study, we present a versatile andscalable self-assembly approach for encapsulating cargo particleswithin well-defined porous membranes or cages. The encapsulation processinvolves camouflaging cargo within a liquid matrix that serves asa scaffold for satellite particles to form densely packed shells around.These satellites fuse to create self-standing cages, after which theliquid matrix is dissolved, trapping the cargo inside. By adjustingthe fusion protocol, we can control the porosity of the cages at variouslength scales. We demonstrate the potential of this technique by employingfunctional cargo to showcase transmembrane transport phenomena, suchas the delivery and active uptake of nanoparticles.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据