4.6 Article

Designing of surface chemical enhanced Raman AgCu and AuCu clusters: Density functional theory

期刊

CHEMICAL PHYSICS LETTERS
卷 829, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.cplett.2023.140739

关键词

Raman performances; Density functional theory calculations; Noble mater based cluster alloys; Atomic level

向作者/读者索取更多资源

The density functional theory calculations were used to investigate the Raman performances of stable CuAg and CuAu clusters for 4-NBT probe molecule. Suitable alloying designs in atomic level were found to reduce cost and enhance Raman signal of noble nanoparticles. The designed clusters exhibited enhanced Raman diffraction peak intensity beyond 11.0% compared to the 4-NBT molecule on the Ag4, Ag13 and Au13 clusters. This strategy could be applied to designing noble metal based surface-enhanced Raman materials with low cost and high enhancement ability by adjusting the atom site in atomic level.
Designing of surface-enhanced Raman material with low cost and high enhancement ability become an important research direction in the field of surface-enhanced Raman scattering. In this paper, the density functional theory calculations were utilized to investigated the Raman performances of stabled CuAg and CuAu clusters for 4-NBT probe molecule. Some suitable alloying designs in atomic level were found to reduce cost and enhance Raman signal of noble nanoparticles, such as, a small quantity introduction of Cu element into the tip of Ag nanoparticle surface and the core-shell structure. The designed Cu2Ag2, Cu1Ag12, Cu1Au12, Cu3Ag10, Cu3Au10, Cu14Ag9, Cu4Au9, Cu9Au4 and Cu10Au3 clusters exhibited enhanced Raman diffraction peak intensity beyond 11.0% compared to the 4-NBT molecule on the Ag4, Ag13 and Au13 clusters. This strategy could be applied to designing noble metal based surface-enhanced Raman materials with low cost and high enhancement ability by adjusting the atom site in atomic level.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据