4.7 Article

The construction of a PAM-less base editing toolbox in Bacillus subtilis and its application in metabolic engineering

期刊

CHEMICAL ENGINEERING JOURNAL
卷 469, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.143865

关键词

PAM-less; Base editor; Gene editing; SpRY; Multiplex; Bacillus subtilis

向作者/读者索取更多资源

SpRY overcomes the PAM recognition barrier in Bacillus subtilis and enables the development of a highly efficient PAM-less base editing toolbox. This toolbox allows for multiplexed gene editing and has been successfully applied in gene knockout and translation control. It shows great potential in metabolic engineering and codon expansion.
The necessity of a specific protospacer adjacent motif (PAM) greatly limited the editing scope and the application range of Cas9-dependent base editors. Here, we showed that SpRY breaks the PAM recognition barrier in Bacillus subtilis with a preference toward NRN than NYN while the PAM specificity is slightly distinct from other or-ganisms. We developed a highly efficient PAM-less base editing toolbox for B. subtilis based on a variant of Cas9 nickase, nSpRY, yielding PAM-less adenine and/or cytosine base editors (PLABE/PLCBE/PLACBE) for A-to-G and/or C-to-T conversions. The conversion efficiency was optimized to 100% at high-activity sites and the editing window was refined to 1-2 nucleotides at pre-selected sites. Multiplexed editing for double, triple, and quadruple genes was validated simply by one cycle of editing. As a proof of concept, PLCBE was utilized to introduce premature stop codons for yielding gene knockouts and PLABE was applied to change start codons from ATG to GTG for realizing translation control. A website was designed to accelerate the inactivation of any genes of interest in B. subtilis by incorporating PAM specificity information for identifying the high-efficiency sites. Facilitated by multiplexed PAM-less editing, we successfully obtained a diversified library of strain vari-ants for chemical production with multi-level regulations in central and competing metabolism pathways. We recruited this library to modulate metabolic fluxes in B. subtilis, achieving up to a 26.3% increase in acetoin production with a final titer of 20.8 g/L in shake-flask fermentation. By enabling in situ base editing of nearly all As and Cs in the Bacillus genome, this toolbox shows great potential in applications of metabolic engineering and codon expansion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据