4.7 Article

Gelatin network reinforced poly (vinylene carbonate-acrylonitrile) based composite solid electrolyte for all-solid-state lithium metal batteries

期刊

CHEMICAL ENGINEERING JOURNAL
卷 475, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.146409

关键词

Solid state lithium metal battery; Gelatin; Composite solid polymer electrolyte; 3D network skeleton; Dendrite inhibition

向作者/读者索取更多资源

The composite solid polymer electrolyte (CSPE) composed of PVN, LiTFSI, and gelatin demonstrates excellent ionic conductivity and a wide electrochemical window, resulting in stable cycle performance and extended battery life. The PVN/LiTFSI/Gelatin (PLG) electrolyte is a simple and effective strategy to achieve high-performance lithium batteries, enabling ultra-stable operation of solid lithium metal batteries.
Solid polymer electrolyte (SPE) has become one of the most promising candidate materials for building solidstate lithium batteries because of its excellent flexibility, expansibility and good interface compatibility with electrodes. However, SPE still has some problems such as low ionic conductivity at room temperature and narrow electrochemical window. Therefore, it is of great significance to develop polymer solid electrolyte with new structure to improve the comprehensive performance of the battery. In this work, Poly (vinylene carbonateacrylonitrile) (PVN) was selected as the matrix of polymer electrolyte, and the network structure filled with biomass material gelatin was used as the skeleton. The composite solid polymer electrolyte (CSPE) composed of PVN, lithium bis (trifluoromethyl) sulfonimide (LiTFSI) and gelatin was prepared by simple solution casting method. The constructed PVN/LiTFSI/Gelatin (PLG) electrolyte has excellent ionic conductivity (3.47 x 10-4 S cm- 1 at 60 degrees C) and wide electrochemical window (4.3 V). Li|10 %PLG CSPE|LiFePO4 battery has a capacity retention rate of 85 % after 1000 cycles of stable operation at 1C rate at 60 degrees C, and has excellent cycle performance and life. In addition, a low interface resistance enables highly reversible Li|Li symmetrical battery has a stably cycle of 1500 h at 0.1 mA cm-2 and has good interface compatibility. Therefore, PLG CSPE composite is a simple and effective strategy to obtain high-performance lithium batteries, which can realize the ultra-stable operation of solid lithium metal batteries.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据