4.7 Article

The inhibitory mechanism of humic acids on photocatalytic generation of reactive oxygen species by TiO2 depends on the crystalline phase

期刊

CHEMICAL ENGINEERING JOURNAL
卷 476, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.146785

关键词

Natural organic matter; TiO2; Humic acids; Crystalline phase; Reactive oxygen species; Photocatalytic oxidation

向作者/读者索取更多资源

In this study, the inhibitory effects of humic acids (HA) on the photocatalytic activity of TiO2 were investigated. The results showed that HA strongly hindered the activity of anatase, but had less effect on rutile and even improved its activity. The study also revealed that the inhibitory effects of HA were due to the different reactive oxygen species (ROS) generation mechanisms for the two polymorphs.
To enable the practical use of TiO2 for photocatalytic water treatment, it is important to understand how dissolved natural organic matter affects its photocatalytic activity and the mechanisms involved in generating reactive oxygen species (ROS). In this study, we systematically investigated the inhibitory effects of humic acids (HA) on 4-chlorophenol (4-CP) degradation using two common TiO2 crystalline phases (anatase and rutile) individually. HA strongly hindered the photocatalytic activity of anatase, with an R-a (the ratio of the first-order rate constant for 4-CP degradation in the absence vs. presence of 30 mg/L HA) of 2.30 (+/- 0.13). This ratio was significantly higher than that of rutile (R-r = 1.21 +/- 0.08), which was less susceptible to this inhibitory effect and even exhibited improved photocatalytic activity at HA concentrations below 20 mg/L. Similar trends were observed for various HA sources, corroborating the crystalline-phase-dependent effect of HA. Adsorption experiments, Fourier transform infrared spectroscopy, and photoelectrochemical analyses suggested that the adsorption mechanisms and hole-scavenging effect of HA on the two TiO2 polymorphs did not differ. Importantly, scavenger, probe, and electron spin resonance experiments revealed that the difference in inhibitory effects of HA originate from the distinct ROS generation mechanisms for the two polymorphs. The oxygen reduction pathway for (OH)-O-center dot generation over anatase was hindered by surface-adsorbed HA, while the water oxidation pathway for (OH)-O-center dot generation over rutile was less affected. Furthermore, surface-adsorbed HA boosted O-2(center dot-) generation on rutile, increasing 4-CP degradation efficiency. This mechanistic insight into NOM-TiO2 interactions informs materials selection and strategies for higher TiO2 photocatalytic performance in different water matrices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据