4.7 Article

Slurry co-hydroprocessing of Kraft lignin and pyrolysis oil over unsupported NiMoS catalyst: A strategy for char suppression

期刊

CHEMICAL ENGINEERING JOURNAL
卷 475, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.146056

关键词

Lignin hydrotreatment; Hydroprocessing; Co-processing; Phenolics; Pyrolysis oil; Unsupported NiMoS catalysts

向作者/读者索取更多资源

This study explores the liquefaction of Kraft lignin assisted by pyrolysis oil in a paraffin solvent. It is shown that the complex composition of pyrolysis oil can aid the depolymerization of lignin and suppress the formation of char. The functional groups present in pyrolysis oil, such as hydroxyl, methoxy, and propyl groups, have a synergistic effect in stabilizing reactive lignin intermediates. A reaction network is proposed to explain why the co-processing of pyrolysis oil and Kraft lignin completely suppressed solid char formation.
Pyrolysis oil (PO) assisted Kraft lignin (KL) liquefaction over an unsupported NiMoS catalyst in a paraffin solvent was explored in this work. A paraffin solvent was used to represent hydrogenated vegetable oil (HVO) which is a biofuel. We have for the first time showed that when co-processing Kraft lignin with pyrolysis oil in a paraffin solvent the char formation could be completely suppressed. The complex composition of PO, containing various compounds with different functional groups, was able to aid the depolymerization pathways of lignin by obstructing the condensation path of reactive lignin derivatives. To further understand the role of different functional groups present in pyrolysis oil during lignin liquefaction, we investigate the co-hydroprocessing of Kraft lignin with various oxygenate monomers using unsupported NiMoS. 4-propylguaiacol (PG) was found to be the most efficient monomer for stabilizing the reactive lignin intermediates, resulting in a low char yield (3.7%), which was 4 times lower than the char production from Kraft lignin hydrotreatment alone. The suppressed rate of lignin fragment repolymerization can be attributed to the synergistic effect of functional groups like hydroxyl (-OH), methoxy (-OCH3), and propyl (-C3H7) groups present in PG. These groups were found to be able to sta-bilize the lignin depolymerized fragments and blocked the repolymerization routes enabling efficient lignin depolymerization. It was found that the presence of a co-reactant like PG during the heating period of the reactor acted as a blocking agent facilitating further depolymerization routes. Finally, a reaction network is proposed describing multiple routes of lignin hydroconversion to solid char, lignin-derived monomers, dimers, and olig-omers, explaining why the co-processing of pyrolysis oil and Kraft lignin completely suppressed the solid char formation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据