4.7 Article

Bioactive composite hydrogel with effects of robust promoting osteogenesis and immunomodulation for osteoporotic bone regeneration

期刊

CHEMICAL ENGINEERING JOURNAL
卷 476, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.146743

关键词

Osteoporosis; Bone defect; Bioactive hydrogel; Macrophage polarization; Parathyroid hormone

向作者/读者索取更多资源

This study developed a composite hydrogel (PHC) by integrating short-chain chitosan and nanoparticulate hydroxyapatite into a covalent poly (ethylene glycol) network. The PHC hydrogel showed enhanced osteogenesis, high mechanical strength, excellent surface properties, and good biocompatibility. The hydrogel also had immunomodulatory effects, promoting M2 macrophage polarization and suppressing M1 macrophage polarization, while increasing osteogenic capacity and inhibiting osteoclast formation and resorption. Parathyroid hormone (PTH) could be effectively loaded and released in the PHC hydrogel (PTH@PHC), further improving osteogenic ability.
Osteoporotic bone defect is an intractable challenge in clinical practice, involving impaired bone repair ability and abnormal immune response. Despite the development of various tissue-engineered scaffolds for osteoporotic bone repair, the pathogenesis of osteoporosis has been lacking consideration, resulting in poor efficacy. Here, we integrated short-chain chitosan (CS) and nanoparticulate hydroxyapatite (nHAp) into a covalent tetra-armed poly (ethylene glycol) (tetra-PEG) network to create a composite hydrogel (PEG/nHAp/CS, PHC). The constructed PHC hydrogel exhibited ability of enhancing osteogenesis with high mechanical strength, excellent surface properties, and good biocompatibility. PHC hydrogel also had immunomodulatory effects of promoting M2 macrophage polarization and suppressing M1 macrophage polarization via antagonizing TLR4/NF-kappa B signaling. PHC hydrogel further increased osteogenic capacity and inhibited osteoclast formation and resorption indirectly. Parathyroid hormone (PTH) could be effective loaded and sustainable released in the PHC hydrogel (PTH@PHC), in which the osteogenic ability was further enhanced via activation of cAMP/PKA/CREB signaling. By using an osteoporotic calvaria bone defect rat model, we demonstrated that the PTH@PHC hydrogel was able to improve bone regeneration and bone defects healing. Findings of this study indicated that the bioactive composite hydrogel has powerful osteogenic-promoting potency and immunomodulation, which provides a promising therapeutic strategy for future clinical repair of osteoporotic bone defect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据