4.7 Article

Boosted photogenerated charge carrier separation by synergy of oxygen and phosphorus co-doping of graphitic carbon nitride for efficient 2-chlorophenol photocatalytic degradation

期刊

CHEMICAL ENGINEERING JOURNAL
卷 471, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.144388

关键词

Photocatalysis; Co-doping; Chlorophenols degradation

向作者/读者索取更多资源

By introducing oxygen and phosphorus dopants into g-C3N4 via one-step thermal polymerization, the light-capturing capability and charge carrier separation are significantly enhanced, leading to superior performance in organic pollutant degradation.
Although graphitic carbon nitride (g-C3N4) has been attracted with its unique band structure, the ease of recombination of charge and the poor light-capturing capability limits its application in degradation of organic pollutants. Herein, via simple one-step thermal polymerization, oxygen and phosphorus dopants are simulta-neously introduced into the heptazine unit of g-C3N4. The obtained O and P co-doped g-C3N4 could completely remove 2-chlorophenol (2-CP) in 30 min, much superior to bulk g-C3N4. The density functional theory (DFT) calculations and experimental characterization demonstrate that the synergy of O and P co-doping leads to the changes in bandgap structure, thus obviously enhancing the light-capturing capability and promoting the charge carrier separation. Moreover, the synergy of O and P co-doping facilitates the adsorption and enrichment of oxygen molecules at phosphorus sites, contributing to the generation of abundant reactive oxygen radicals. These radicals actively participate in the subsequent degradation of organic pollutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据