4.7 Article

Understanding how microbial electrolysis cell assisted anaerobic digestion enhances triclocarban dechlorination in sludge

期刊

CHEMICAL ENGINEERING JOURNAL
卷 476, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.146371

关键词

Waste activated sludge; Anaerobic digestion; Triclocarban; Biodegradation; Dechlorination; Metagenomic analysis

向作者/读者索取更多资源

This study investigates the transformation of triclocarban (TCC) in microbial electrolysis cell assisted anaerobic digestion (MEC-AD) reactors, and fills the knowledge gap about whether and how MEC-AD enhances the degradation of refractory pollutants in sludge. The results show that over 83.3% of TCC was dechlorinated in MEC-AD reactors, while the mass loss in the control AD reactor was only 0.53%. The presence of electrodes promoted TCC dechlorination in MEC-AD reactors, and applied voltages promoted hydrogenotrophic methanogenesis.
Microbial electrolysis cell assisted anaerobic digestion (MEC-AD) has recently been considered as an efficient method for degradations of refractory pollutants. To date, however, knowledge about whether and how MEC-AD enhances the degradations of refractory pollutants in sludge remains largely unknown. This study therefore aims to fill this knowledge gap through investigating the transformation of triclocarban (TCC), a widely used antimicrobial agent, in MEC-AD reactors. Experimental results showed that over 83.3 % of TCC was dechlorinated to less toxic dichlorocarbanilide, monochlorocarbanilide and carbanilide in MEC-AD reactors. However, the mass loss of TCC in AD reactor (the electrodeless control) was merely 0.53 %. The presence of electrodes promoted TCC dechlorination in MEC-AD reactors, while the applied voltages (0.6 and 0.8 V) promoted hydrogenotrophic methanogenesis. H2-utilizing Nitrospira and homoacetogenic Acetobacterium were recognized as potential TCC dechlorinators, with their abundances in the planktonic sludge of MEC-AD reactors being 5.0-16.5 times higher than those in AD reactor. The carbon brush electrodes in MEC-AD reactors caused the enrichment of acetoclastic Methanothrix and the complete removal of acetic acid, which thereby thermodynamically accelerated homoacetogenesis and H2-producing acetogenesis in the planktonic sludge. Moreover, the direct interspecies electron transfer using hydrogenase as terminal electron acceptor was enhanced in the planktonic sludge of MEC-AD reactors, which could also improve H2 production rate and stimulate the growth and activity of TCC dechlorinators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据