4.7 Article

Quantification of interparticle forces in gas-agglomerated particles fluidized beds

期刊

CHEMICAL ENGINEERING JOURNAL
卷 470, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.144181

关键词

Gas-solid fluidized bed; Hydrodynamics; Interparticle forces; Particle agglomeration; Quantification

向作者/读者索取更多资源

This study proposes two equivalent equations for quantifying interparticle forces (IPFs) in a gas-solid fluidized bed and examines their effects on agglomeration. The first equation, the generalized Umf deviation equation, correlates the magnitude of IPFs to the ratio of experimental and theoretical minimum fluidization velocities. The second equation, the generalized Dynamic Hausner Ratio (DHR) equation, relates the magnitude of IPFs to the agglomerate size as well as the DHR. These equations can be applied in various conditions and help quantify the resultant IPFs acting on particles. The opportunities and limitations of the proposed equations are discussed.
Interparticle forces (IPFs) dominate the fluidization of fine and ultrafine particles and are responsible for the formation of agglomerates. Two equivalent equations are proposed in this study for the quantification of IPFs in a gas-solid fluidized bed. The first is the generalized Umf deviation equation correlating the magnitude of IPFs to the ratio of experimental and theoretical minimum fluidization velocities. The second is the generalized form of the Dynamic Hausner Ratio (DHR) equation, which was developed based on the appearance of an overshoot in the bed pressure drop profile at Umf. The generalized DHR equation relates the magnitude of IPFs to the agglomerate size in addition to the DHR, i.e., the ratio of minimum fluidization and loose bulk voidages. The proposed equations can be employed under various conditions, including ambient and elevated operating conditions, as well as individual and agglomerated particles fluidization. They help quantify the resultant IPFs acting on particles irrespective of the types of these forces. The quantified IPFs by the proposed equations were verified and qualitatively validated with different principles. The results indicated that different fluidization behaviors correspond to varying magnitudes of IPFs. The opportunities and limitations of the proposed equations are further discussed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据