4.7 Article

Highly efficient solar-driven water evaporation through a cotton fabric evaporator with wettability gradient

期刊

CHEMICAL ENGINEERING JOURNAL
卷 471, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.cej.2023.144313

关键词

Solar interfacial evaporation; Cotton fabric evaporator; Wettability gradient; Seawater desalination; Wastewater purification

向作者/读者索取更多资源

This article presents a cotton fabric evaporator with a superhydrophobic-hydrophobic-hydrophilic-superhydrophilic wettability gradient, which successfully limits excessive water from entering the evaporator and minimizes energy loss. The evaporator exhibits high vapor generation rate and energy conversion efficiency under 1 sun irradiation and can be used for desalination and wastewater treatment to meet drinking water requirements set by the WHO. This study provides a simple and scalable strategy for preparing evaporators for portable solar water purification, industrial solar-powered water treatment, and other advanced solar thermal applications.
Harvesting light energy and converting it to heat as terminal energy by black photothermal sheets as evaporator is a novel strategy to attain fresh water. Although immense progress has been achieved in terms of the improvement of the evaporation rate and energy efficiency, it is still challenging to limit excessive water from entering the evaporator to eliminate the energy loss. Herein, a novel cotton fabric evaporator with a superhydrophobic-hydrophobic-hydrophilic-superhydrophilic wettability gradient (CFE-WG) was constructed by the layer-by-layer self-assembly of carbon nanotubes (CNTs), followed by separate modification with polyvinyl alcohol (PVA) and polydimethylsiloxane (PDMS). The wettability gradient in the thickness direction of CFE-WG permitted the slow transfer of water from the superhydrophilic side to the hydrophilic area and ultimately trapped the water at the hydrophilic/hydrophobic (water/air) evaporation interface, which avoiding the entry of excessive saline water inside the evaporator and maximally limiting thermal leakage. Under 1 sun irradiation, this CFE-WG exhibited a high vapor generation rate up to 1.54 kg m-2h-1, corresponding to an energy conversion efficiency of 93.7%. Notably, it could be used for desalination and wastewater treatment to collect fresh water that meets drinking requirements set by the WHO. This study provides a facile strategy to prepare a scalable evaporator for portable solar water purification, industrial solar-powered water treatment, and other advanced solar thermal applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据