4.6 Article

The Role of Water in Carbon Dioxide Adsorption in Porphyrinic Metal-Organic Frameworks

期刊

CHEMCATCHEM
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.202300722

关键词

Adsorption; artificial photosynthesis; CO2 capture; metal-organic framework; spectroscopy

向作者/读者索取更多资源

Capturing and converting CO2 through artificial photosynthesis using photoactive, porous materials is a promising approach for addressing increasing CO2 concentrations. Porphyrinic Zr-based metal-organic frameworks (MOFs) incorporating a photosensitizer in the porous structure show potential for CO2 sorption and activation. This study focuses on the initial step of artificial photosynthesis: CO2 adsorption and activation in the presence of water, revealing the influence of humidity and pore-size on CO2 sorption and light harvesting in porphyrinic MOFs.
Capturing and converting CO2 through artificial photosynthesis using photoactive, porous materials is a promising approach for addressing increasing CO2 concentrations. Porphyrinic Zr-based metal-organic frameworks (MOFs) are of particular interest as they incorporate a photosensitizer in the porous structure. Herein, the initial step of the artificial photosynthesis is studied: CO2 sorption and activation in the presence of water. A combined vibrational and visible spectroscopic approach was used to monitor the adsorption of CO2 into PCN-222 and PCN-223 MOFs, and the photophysical changes of the porphyrinic linker as a function of water concentration. A shift in CO2 sorption site and bending of the porphyrin macrocycle in response to humidity was observed, and CO2/H2O competition experiments revealed that the exchange of CO2 with H2O is pore-size dependent. Therefore, humidity and pore-size can be used to tune CO2 sorption, CO2 capacity, and light harvesting in porphyrinic MOFs, which are key factors for CO2 photoreduction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据