4.4 Article

Increasing the Stability of Flavin-Dependent Halogenases by Disulfide Engineering

期刊

CHEMBIOCHEM
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.202300700

关键词

disulfide engineering; flavin-dependent halogenase; PyrH; Thal; thermostability

向作者/读者索取更多资源

This study demonstrates that covalent homodimerization by disulfide engineering can significantly improve the thermostability of halogenases Thal and PyrH while retaining their activity. This method is of great importance for improving the stability and application potential of halogenases.
Flavin-dependent halogenases allow halogenation of electron-rich aromatic compounds under mild reaction conditions even at electronically unfavored positions with high regioselectivity. In order to expand the application of halogenases, the enzymes need to be improved in terms of stability and efficiency. A previous study with the tryptophan 6-halogenase Thal demonstrated that thermostable Thal variants tend to form dimers in solution while the wild type is present as a monomer. Based on this a dimeric Thal variant was generated that is covalently linked by disulfide bonds. Introducing two cysteine residues at the dimer interface resulted in the variant Thal CC with significantly increased thermostability (T50=15.7 K) and stability over time at elevated temperature compared to the wild type. By introducing the homologous mutations into the tryptophan 5-halogenase PyrH, we were able to show that the stabilization by covalent dimerization can also be transferred to other halogenases. Moreover, it was possible to further increase the thermostability of PyrH by inserting cysteine mutations at alternative sites of the dimer interface. Together we are strong: Covalent homodimerization by disulfide engineering of the tryptophan halogenases Thal and PyrH leads to a significant increase in thermostability while retaining activity.image

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据