4.7 Article

Late Holocene environmental changes inferred from pollen records of Yileimu Lake sediments, southern Altai Mountains, Northwest China

期刊

CATENA
卷 228, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.catena.2023.107181

关键词

Pollen; Landscape changes; Human activities; Seismic deposit; Westerlies; Southern Altai Mountains

向作者/读者索取更多资源

This study reconstructed the climate and landscape changes in the southern Altai Mountains over the past 3500 years using radiocarbon dating and pollen analysis. The findings show that the region experienced a humid climate, supporting the growth of taiga and steppe vegetation, during 1550 BCE-720 BCE. From 720 BCE-390 CE, the climate was warm and human activities increased. Desert-steppe developed in response to increased aridity and/or human activities during 390 CE-1560 CE. After 1560 CE, the taiga and steppe recovered due to a return to humid conditions. Human activities have been the key factor affecting vegetation in the past 2000 years.
Climate and landscape changes since the late Holocene have received increasing attention. The Altai region, which is located at the intersection of the Inner Asian Mountain Corridor and the Eurasian Steppe Roads, is relatively poorly studied. In this study, based on robust radiocarbon ages and detailed pollen analyses, the history of climate and landscape changes was reconstructed from Yileimu Lake, southern Altai Mountains during the past 3500 years. Four stages of vegetation change are identified: (1) During 1550 BCE-720 BCE, the vegetation was taiga (mainly Picea and Betula) in uplands, and steppe (dominated by Artemisia, Poaceae and Cyperaceae) around the lake, indicating a humid climate, which was favorable for the expansion of human activities including enhanced nomadic pastoralism in Altai Mountains and transcontinental culture exchange along the proto-Silk Roads. (2) During 720 BCE-390 CE, there was a stepwise decrease in Picea, rapid increase and then decrease in Betula, and gradual increases in contents of Poaceae and Thalictrum pollen, and fern spores, indicating a warm and moderately humid climate, with evidence of more intense human activities during 20 BCE-390 CE. (3) During 390 CE-1560 CE, desert-steppe (with high Amaranthaceae, Caryophyllaceae, Ephedra and Cyperaceae content) developed in response to an increasing arid climate and/or enhanced human activities. (4) After 1560 CE, taiga and steppe recovered due to the humid climate. Human activities have become the key factor affecting vegetation since the past 2000 years. In addition, the vegetation response to an Ms >= 8.0 earthquake that occurred around 1550 BCE was characterized by a rapid recovery of Betula, followed by Artemisia and Picea. Restoration of vegetation helps to reduce soil erosion and afforest exposed landslides.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据