4.7 Article

A computational study of cellulose regeneration: Coarse-grained molecular dynamics simulations

期刊

CARBOHYDRATE POLYMERS
卷 313, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2023.120853

关键词

Cellulose regeneration; Coarse-grained molecular dynamics; simulations; Martini 3; Cellulose I; Cellulose II; Backmapping

向作者/读者索取更多资源

In this study, we used Martini 3 molecular dynamics simulations to investigate the regeneration of cellulose at a scale comparable to experiments. The structural changes and formation of cellulose sheets and crystallites were monitored using X-ray diffraction (XRD) curves. Our results show that the calculated coarse-grained morphologies of regenerated cellulose are transformed to cellulose II, which is in good agreement with experimental observations.
Understanding the microscopic mechanisms of regeneration of cellulose is prerequisite for engineering and controlling its material properties. In this paper, we performed coarse-grained Martini 3 molecular dynamics simulations of cellulose regeneration at a scale comparable to the experiments. The X-ray diffraction (XRD) curves were monitored to follow the structural changes of regenerated cellulose and trace formation of cellulose sheets and crystallites. The calculated coarse-grained morphologies of regenerated cellulose were backmapped to atomistic ones. After the backmapping we find that the regenerated coarse-grained cellulose structures calculated for both topology parameters of cellulose I beta and cellulose II/III, are transformed to cellulose II, where the calculated XRD curves exhibit the main peak at approximately 20-21 degrees, corresponding to the (110)/(020) planes of cellulose II. This result is in good quantitative agreement with the available experimental observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据