4.7 Article

Micro assembly strategies for enhancing solid-state emission of cellulose nanocrystals and application in photoluminescent inks

期刊

CARBOHYDRATE POLYMERS
卷 324, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2023.121539

关键词

Cellulose nanocrystals; Solid-state emission; Micro assembly; Enhancement; Inks

向作者/读者索取更多资源

This study proposes a micro-assembly method to improve the photoluminescent properties of crystalline cellulose nanocrystals (CNCs) by organizing them within a sub-micrometer-sized metal-organic framework and coating with TiO2. The TiO2 coating prevents CNC assembly breakdown and allows information to be revealed using screenprinted labels for anti-counterfeiting purposes.
Crystalline cellulose exhibits photoluminescent properties, making it ideal for solid-state emission through properly assembling crystal arrays. However, assembling in water or other polar solvents poses structural integrity issues. To address this, a micro-assembly method is proposed. Cellulose nanocrystals (CNCs) are organized within a sub-micrometer-sized ZIF-8 metal-organic framework and coated with TiO2. Notably, the assembly within ZIF-8 improves the CNCs' emission quantum yield to 37.8 %. The bonding between ZIF-8 and CNCs relies on electrostatic interactions and hydrogen bonds, which are sensitive to polar solvents. Yet, the sturdy coordination bonds between TiO2 and ZIF-8 enhance resistance. Solvent-resistance tests confirm that TiO2 prevents CNC assembly breakdown, resulting in only an 8.0 % drop in photoluminescent intensity in an alkaline solution after 24 h, compared to 33 % without the coating. For anti-counterfeiting purposes, TiO2@ZIF-8@CNC is combined with a polymer matrix, allowing information to be revealed under specific wavelengths using screenprinted labels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据