4.7 Article

Identification of arnicolide C as a novel chemosensitizer to suppress mTOR/E2F1/FANCD2 axis in non-small cell lung cancer

期刊

BRITISH JOURNAL OF PHARMACOLOGY
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1111/bph.16281

关键词

arnicolide C; chemosensitizing effect; DNA cross-linking agents; FANCD2; mTOR

向作者/读者索取更多资源

The bioactive compound ArC in Centipeda minima extracts has synergistic cytotoxic effects with DNA cross-linking drugs in non-small cell lung cancer cells, by inhibiting the mTOR/E2F1/FANCD2 signaling axis and suppressing DNA damage response.
Background and PurposeThe mammalian target of rapamycin (mTOR) pathway plays critical roles in intrinsic chemoresistance by regulating Fanconi anaemia complementation group D2 (FANCD2) expression. However, the mechanisms by which mTOR regulates FANCD2 expression and related inhibitors are not clearly elucidated. Extracts of Centipeda minima (C. minima) showed promising chemosensitizing effects by inhibiting FANCD2 activity. Here, we have aimed to identify the bioactive chemosensitizer in C. minima extracts and elucidate its underlying mechanism.Experimental ApproachThe chemosensitizing effects of arnicolide C (ArC), a bioactive compound in C. minima, on non-small cell lung cancer (NSCLC) were investigated using immunoblotting, immunofluorescence, flow cytometry, the comet assay, small interfering RNA (siRNA) transfection and animal models. The online SynergyFinder software was used to determine the synergistic effects of ArC and chemotherapeutic drugs on NSCLC cells.Key ResultsArC had synergistic cytotoxic effects with DNA cross-linking drugs such as cisplatin and mitomycin C in NSCLC cells. ArC treatment markedly decreased FANCD2 expression in NSCLC cells, thus attenuating cisplatin-induced FANCD2 nuclear foci formation, leading to DNA damage and apoptosis. ArC inhibited the mTOR pathway and attenuated mTOR-mediated expression of E2F1, a critical transcription factor of FANCD2. Co-administration of ArC and cisplatin exerted synergistic anticancer effects in the A549 xenograft mouse model by suppressing mTOR/FANCD2 signalling in tumour tissues.Conclusion and ImplicationsArC suppressed DNA cross-linking drug-induced DNA damage response by inhibiting the mTOR/E2F1/FANCD2 signalling axis, serving as a chemosensitizing agent. This provides insight into the anticancer mechanisms of ArC and offers a potential combinatorial anticancer therapeutic strategy. image

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据