4.6 Article

Causal influence of brainstem response to transcutaneous vagus nerve stimulation on cardiovagal outflow

期刊

BRAIN STIMULATION
卷 16, 期 6, 页码 1557-1565

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.brs.2023.10.007

关键词

-

向作者/读者索取更多资源

This study evaluated the brain-heart interaction in response to transcutaneous auricular vagus nerve stimulation (taVNS) using ultrahigh field functional magnetic resonance imaging (fMRI) and a causal approach based on Granger causality. The results demonstrated that taVNS evoked functional brainstem responses and identified causal links between brainstem nuclei and cardiovagal outflow. The study also elucidated potential mechanisms by which information is relayed between brainstem nuclei and high-frequency heart rate variability in response to taVNS.
Background: The autonomic response to transcutaneous auricular vagus nerve stimulation (taVNS) has been linked to the engagement of brainstem circuitry modulating autonomic outflow. However, the physiological mechanisms supporting such efferent vagal responses are not well understood, particularly in humans. Hypothesis: We present a paradigm for estimating directional brain-heart interactions in response to taVNS. We propose that our approach is able to identify causal links between the activity of brainstem nuclei involved in autonomic control and cardiovagal outflow. Methods: We adopt an approach based on a recent reformulation of Granger causality that includes permutation-based, nonparametric statistics. The method is applied to ultrahigh field (7T) functional magnetic resonance imaging (fMRI) data collected on healthy subjects during taVNS. Results: Our framework identified taVNS-evoked functional brainstem responses with superior sensitivity compared to prior conventional approaches, confirming causal links between taVNS stimulation and fMRI response in the nucleus tractus solitarii (NTS). Furthermore, our causal approach elucidated potential mechanisms by which information is relayed between brainstem nuclei and cardiovagal, i.e., high-frequency heart rate variability, in response to taVNS. Our findings revealed that key brainstem nuclei, known from animal models to be involved in cardiovascular control, exert a causal influence on taVNS-induced cardiovagal outflow in humans. Conclusion: Our causal approach allowed us to noninvasively evaluate directional interactions between fMRI BOLD signals from brainstem nuclei and cardiovagal outflow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据