4.5 Article

Dynamic changes of oligodendrogenesis in neonatal rats with hypoxic-ischemic white matter injury

期刊

BRAIN RESEARCH
卷 1817, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.brainres.2023.148495

关键词

Oligodendrogenesis; Hypoxia -ischemia; White matter injury; Neonatal rats

向作者/读者索取更多资源

Selective vulnerability of oligodendrocytes is closely related to white matter injury in premature infants. This study revealed the long-term dynamic effect of endogenous oligodendrogenesis after hypoxic-ischemic white matter injury, with the proliferation of oligodendrocyte precursor cells inhibited from postoperative day 3 to 14, which may be a potential target for early intervention.
Background: White matter injury (WMI) is an important type of preterm brain injury, which may result in severe neurological sequelae and lack of effective treatments. It is ascertained that selective vulnerability of oligodendrocytes is closely related to the WMI in preterm infants. But the alteration of the endogenous oligodendrogenesis over long time after hypoxic-ischemic WMI is still not clearly elucidated. Methods: We adopted an animal model of hypoxic-ischemic WMI in 3-day-old neonatal Sprague-Dawley rats. Immunofluorescence staining and western blotting were used to detect dynamic changes of oligodendrogenesis in the white matter region on postoperative day (POD) 1, 3, 7, 14, 28, 56 and 84. Results: In the sham group, the oligodendrocyte lineage in the white matter reached a developmental peak from POD 3 to 14. The proliferation and development of oligodendrocyte precursor cells (OPCs) occurred primarily within POD 14. The number of mature oligodendrocytes showed an upward trend and a dynamic change in proliferation over time. While in the WMI group, the oligodendrocyte lineage was upregulated on POD1 and 3 but downregulated on POD 7 and 14. The proliferation of OPCs increased on POD 1 and decreased on POD 3 and 7, with the total number of OPCs significantly reduced from POD 3 to 14. The number of mature oligodendrocytes decreased from POD 3 to 28, and return to the level of the sham group on POD 56 and 84, whereas the MBP expression was still significantly downregulated on POD 56 and 84. Conclusions: Hypoxia-ischemia can have a long-term dynamic effect on the endogenous oligodendrogenesis of neonatal rat brain white matter. The proliferation of OPCs was promoted on POD 1 but inhibited from POD 3 to 14, which may be an early intervention target to improve oligodendrogenesis. The number of mature oligodendrocytes recover to the normal on POD 56 and 84 but the myelination is still blocked, which suggests it is essential to promote the maturation of oligodendrocyte and its function recovery at the same time within POD 28. Such efforts will provide the opportunity to test new interventions in pre-clinical studies for their promising clinical application.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据