4.5 Article

Adaptive laboratory evolution and transcriptomics-guided engineering of Escherichia coli for increased isobutanol tolerance

期刊

BIOTECHNOLOGY JOURNAL
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/biot.202300270

关键词

adaptive laboratory evolution; evolutionary engineering; isobutanol; isobutanol tolerance; reverse engineering; transcriptomics

向作者/读者索取更多资源

In this study, isobutanol-tolerant mutants were isolated from two E. coli parental strains, E. coli BL21(DE3) and MG1655(DE3), through adaptive laboratory evolution (ALE) under high isobutanol concentrations. Subsequently, 16 putative genes responsible for isobutanol tolerance were identified by transcriptomic analysis. Overexpression of four genes (fadB, dppC, acs, and csiD) in E. coli conferred isobutanol tolerance and improved isobutanol titers. These findings are important for understanding microbial isobutanol tolerance and facilitating industrial isobutanol production.
As a renewable energy from biomass, isobutanol is considered as a promising alternative to fossil fuels. To biotechnologically produce isobutanol, strain development using industrial microbial hosts, such as Escherichia coli, has been conducted by introducing a heterologous isobutanol synthetic pathway. However, the toxicity of produced isobutanol inhibits cell growth, thereby restricting improvements in isobutanol titer, yield, and productivity. Therefore, the development of robust microbial strains tolerant to isobutanol is required. In this study, isobutanol-tolerant mutants were isolated from two E. coli parental strains, E. coli BL21(DE3) and MG1655(DE3), through adaptive laboratory evolution (ALE) under high isobutanol concentrations. Subsequently, 16 putative genes responsible for isobutanol tolerance were identified by transcriptomic analysis. When overexpressed in E. coli, four genes (fadB, dppC, acs, and csiD) conferred isobutanol tolerance. A fermentation study with a reverse engineered isobutanol-producing E. coli JK209 strain showed that fadB or dppC overexpression improved isobutanol titers by 1.5 times, compared to the control strain. Through coupling adaptive evolution with transcriptomic analysis, new genetic targets utilizable were identified as the basis for the development of an isobutanol-tolerant strain. Thus, these new findings will be helpful not only for a fundamental understanding of microbial isobutanol tolerance but also for facilitating industrially feasible isobutanol production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据