4.7 Review

Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans

期刊

BIOTECHNOLOGY ADVANCES
卷 67, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.biotechadv.2023.108180

关键词

Bacteria; Pathway engineering; Engineered glycans; Glycoconjugates; Biopharmaceutical uses

向作者/读者索取更多资源

The recent development in human glycome and glycosylation pathways has allowed the incorporation of suitable machinery for protein modification in non-natural hosts, creating opportunities for constructing next-generation tailored glycans and glycoconjugates. Bacterial metabolic engineering enables the production of tailored bio-polymers using living microbial factories as whole-cell biocatalysts, providing a cost-effective means for producing valuable polysaccharides in bulk quantities for practical applications.
The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored bio-polymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using prefer-ably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据