4.5 Article

Native and nonnative reactions in ethanolamine ammonia-lyase are actuated by different dynamics

期刊

BIOPHYSICAL JOURNAL
卷 122, 期 19, 页码 3976-3985

出版社

CELL PRESS
DOI: 10.1016/j.bpj.2023.08.020

关键词

-

向作者/读者索取更多资源

This study investigates the contribution of solvent-coupled configurational fluctuations to the complex choreography involved in enzymatic reactions. The results suggest that the nonnative reaction is coupled to generic local fluctuations intrinsic to globular proteins, while the native reaction is governed by select coupled solvent-protein configurational fluctuations. These findings highlight the importance of dynamical coupling in enzymatic catalysis.
We address the contribution of select classes of solvent-coupled configurational fluctuations to the complex choreography involved in configurational and chemical steps in an enzyme by comparing native and nonnative reactions conducted at different protein internal sites. The low temperature, first-order kinetics of covalent bond rearrangement of the cryotrapped substrate radical in coenzyme B12-dependent ethanolamine ammonia-lyase (EAL) from Salmonella enterica display a kink, or increase in slope, of the Arrhenius plot with decreasing temperature. The event is associated with quenching of a select class of reaction-actuating collective fluctuations in the protein hydration layer. For comparison, a nonnative, radical reaction of the protein interior cysteine sulfhydryl group with hydrogen peroxide (H2O2) is introduced by cryotrapping EAL in an aqueous H2O2 eutectic system. The low-temperature aqueous H2O2 protein hydration and mesodomain solvent phases surrounding cryotrapped EAL are characterized by using TEMPOL spin probe electron paramagnetic resonance spectroscopy, including a freezing transition of the eutectic phase that orders the protein hydration layer. Kinetics of the cysteine-H2O2 reaction in the EAL protein interior are monitored by DEPMPO spin trapping of hydroxyl radical product. In contrast to the native reaction, the linear Arrhenius relation for the nonnative cysteine-H2O2 reaction is maintained through the solvent-protein ordering transition. The nonnative reaction is coupled to the generic local, incremental fluctuations that are intrinsic to globular proteins. The comparative approach supports the proposal that select coupled solvent-protein configurational fluctuations actuate the native reaction, and suggests that select dynamical coupling contributes to the degree of catalysis in enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据