4.7 Article

Co-assembled nanocomplexes comprising epigallocatechin gallate and berberine for enhanced antibacterial activity against multidrug resistant Staphylococcus aureus

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 163, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2023.114856

关键词

EGCG; BBR; Co-assembly; Nanocomposites; Antibacterial activity

向作者/读者索取更多资源

This study reported a simple method for preparing a novel nanocomposite BBR-EGCG nanoparticles (BBR-EGCG NPs). These NPs showed improved biocompatibility and stronger antibacterial effects than free-BBR and first-line antibiotics in both in vitro and in vivo experiments. The combination of BBR and EGCG exhibited synergistic bactericidal effects and biofilm-scavenging effects against S.aureus and MRSA without toxicity.
Berberine (BBR), a major alkaloid in Coptis chinensis, and (-)-epigallocatechin-3-gallate (EGCG), a major catechin in green tea, are two common phytochemicals with numerous health benefits, including antibacterial efficacy. However, the limited bioavailability restricts their application. Advancement in the co-assembly technology to form nanocomposite nanoparticles precisely controls the morphology, electrical charge, and functionalities of the nanomaterials. Here, we have reported a simple one-step method for preparing a novel nanocomposite BBR-EGCG nanoparticles (BBR-EGCG NPs). These BBR-EGCG NPs exhibit improved biocompatibility and greater antibacterial effects both in vitro and in vivo relative to free-BBR and first-line antibiotics (i.e., benzylpenicillin potassium and ciprofloxacin). Furthermore, we demonstrated a synergistic bactericidal effect for BBR when combined with EGCG. We also evaluated the antibacterial activity of BBR and the possible synergism with EGCG in MRSA-infected wounds. A potential mechanism for synergism between S. aureus and MRSA was also explored through ATP determination, the interaction between nanoparticles and bacteria, and, then, transcription anal-ysis. Furthermore, our experiments on S. aureus and MRSA confirmed the biofilm-scavenging effect of BBR-EGCG NPs. More importantly, toxicity analysis revealed that the BBR-EGCG NPs had no toxic effects on the major organs of mice. Finally, we proposed a green method for the fabrication of BBR-EGCG combinations, which may provide an alternative approach to treating infections with MRSA without using antibiotics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据