4.7 Article

Anti-angiogenic effects of oleacein and oleocanthal: New bioactivities of compounds from Extra Virgin Olive Oil

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 165, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2023.115234

关键词

Mediterranean diet; Cancer; Virgin Olive Oil; Angiogenesis; Endothelial cells; Olea europaea

向作者/读者索取更多资源

This study explores the modulatory effects of (-)-oleocanthal and (-)-oleacein on angiogenesis. The results demonstrate that these compounds have anti-angiogenic effects and can modulate signaling pathways related to survival and proliferation. Therefore, (-)-oleocanthal and (-)-oleacein may be potential candidates for angioprevention and further studies in clinical interventions, as well as interesting functional claims for the food industry.
Phenolic compounds play a key role in the health benefits of Extra Virgin Olive Oil (EVOO). Among these molecules, the focus has been recently put on (-)-oleocanthal and (-)-oleacein, for which anti-cancer and angiogenesis-related findings have been reported. Here, we explored the modulatory action of (-)-oleocanthal and (-)-oleacein on angiogenesis, the process by which new vessels are created from pre-existent ones, which is directly linked to tumor progression and other pathological conditions. Two in vivo models strongly sustained by angiogenesis, and an in vitro model of endothelial cells to study different steps of angiogenesis, were used. In vivo evidence pointed to the anti-angiogenic effects of both compounds in vivo. In vitro, (-)-oleacein and (-)-oleocanthal inhibited the proliferation, invasion, and tube formation of endothelial cells, and (-)-oleacein significantly repressed migration and induced apoptosis in these cells. Mechanistically, the compounds modulated signaling pathways related to survival and proliferation, all at concentrations of physiological relevance for humans. We propose (-)-oleacein and (-)-oleocanthal as good candidates for angioprevention and for further studies as modulators of angiogenesis in clinical interventions, and as interesting functional claims for the food industry. Chemical compounds studied in this article: Oleocanthal (PubChem CID: 11652416); Oleacein (PubChem CID: 18684078).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据