4.7 Article

Nintedanib inhibits normal human vitreous-induced epithelial-mesenchymal transition in human retinal pigment epithelial cells

期刊

BIOMEDICINE & PHARMACOTHERAPY
卷 166, 期 -, 页码 -

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biopha.2023.115403

关键词

Proliferative vitreoretinopathy (PVR); Nintedanib; Epithelial-mesenchymal transition (EMT); Normal human vitreous; Retinal pigment epithelium (RPE) cells

向作者/读者索取更多资源

The purpose of this study was to investigate the potential of nintedanib as a therapeutic approach to PVR. By assessing the impact of nintedanib on HV-induced EMT in ARPE-19 cells, we found that nintedanib effectively suppressed the proliferation, migration, and contraction of ARPE-19 cells, and attenuated the upregulation of mesenchymal markers. These findings suggest that nintedanib exhibits protective effects against EMT in ARPE-19 cells and could be a promising therapeutic option for PVR.
Purpose: In this study, we aim to investigate the potential of nintedanib as a therapeutic approach to proliferative vitreoretinopathy (PVR), which is the leading cause of failure in retinal detachment repair. PVR is characterized by the epithelial-mesenchymal transition (EMT) of retinal pigment epithelial (RPE) cells, and understanding the effects of nintedanib on EMT in the normal human vitreous (HV)-induced RPE cells is crucial.Methods: Our research focuses on assessing the impact of nintedanib on HV-induced EMT in human retinal pigment epithelial (ARPE-19) cells in vitro. We employed various techniques, including quantitative real-time PCR (qPCR), western blot analysis, and immunofluorescence staining, to evaluate the mRNA and protein expression of EMT biomarkers in HV-induced ARPE-19 cells. Additionally, we measured the proliferation of RPE cells using cell counting, CCK-8, and Ki-67 assays. Migration was assessed through wound healing and transwell migration assays, while contraction was determined using a collagen gel contraction assay. Morphological changes were examined using phase-contrast microscopy.Results: Our results demonstrate that nintedanib selectively attenuates the upregulation of mesenchymal markers in HV-induced ARPE-19 cells, at both the mRNA and protein levels. Furthermore, nintedanib effectively suppresses the HV-induced proliferation, migration, and contraction of ARPE-19 cells, while maintaining the cells' basal activity. These findings strongly suggest that nintedanib exhibits protective effects against EMT in ARPE-19 cells and could be a promising therapeutic option for PVR.Conclusions: By elucidating the anti-EMT effects of nintedanib in HV-induced RPE cells, our study highlights the potential of this oral triple tyrosine kinase inhibitor in the treatment of PVR. These findings contribute to the growing body of research aimed at developing novel strategies to prevent and manage PVR, ultimately improving the success rates of retinal detachment repair.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据