4.5 Article

Effect of flow rate ratio and positioning on a lighthouse tip ECMO return cannula

期刊

出版社

SPRINGER HEIDELBERG
DOI: 10.1007/s10237-023-01741-2

关键词

ECMO; CFD; Return cannula; Hemolysis; PIV; Recirculation; POD

向作者/读者索取更多资源

In this study, a validated numerical simulation of a conventional lighthouse tip cannula was conducted to characterize the flow structures and their influence on hemolysis. The results showed the presence of strong shear layers and backflow regions, which may pose a potential risk of blood damage. However, the global hemolysis index did not show significant deviations.
Extracorporeal membrane oxygenation is a life-saving support therapy in the case of cardiopulmonary refractory failure. Its use is associated to complications due to the presence of artificial surfaces and supraphysiological stress conditions. Thus, knowledge of the fluid structures associated to each component can give insight into sources of blood damage. In this study, an experimentally validated numerical study of a conventional lighthouse tip cannula in return configuration was carried out to characterize the flow structures using water or a Newtonian blood analog with different flow rate ratios and cannula positioning and their influence on hemolysis. The results showed that strong shear layers developed where the jets from the side holes met the co-flow. Stationary backflow regions at the vessel wall were also present downstream of the cannula. In the tilted case, the recirculation was much more pronounced on the wide side and almost absent on the narrow side. Small vortical backflow structures developed at the side holes which behaved like obstacles to the co-flow, creating pairs of counter-rotating vortices, which induced locally higher risk of hemolysis. However, global hemolysis index did not show significant deviations. Across the examined flow rate ratios, the holes on the narrow side consistently reinfused a larger fraction of fluid. A radial force developed in the tilted case in a direction so as to recenter the cannula in the vessel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据