4.8 Article

Engineered porosity for tissue-integrating, bioresorbable lifetime-based phosphorescent oxygen sensors

期刊

BIOMATERIALS
卷 301, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2023.122286

关键词

Optical sensing; Tissue oxygenation; Silk; Bioresorbable; Phosphorescence; Porphyrin

向作者/读者索取更多资源

The study explores versatile silk protein-based material formats for bioreabsorbable, implantable optical oxygen sensors that can integrate with surrounding tissues. Silk is chosen due to its biocompatibility and unique chemistry for interactions with chromophores. The ability to tune degradation time without altering chemical composition is demonstrated. A multi-week rodent study establishes the ability to consistently monitor tissue oxygenation in vivo, with sponges showing faster response to oxygen challenges compared to film samples.
Versatile silk protein-based material formats were studied to demonstrate bioresorbable, implantable optical oxygen sensors that can integrate with the surrounding tissues. The ability to continuously monitor tissue oxygenation in vivo is desired for a range of medical applications. Silk was chosen as the matrix material due to its excellent biocompatibility, its unique chemistry that facilitates interactions with chromophores, and the potential to tune degradation time without altering chemical composition. A phosphorescent Pd (II) benzoporphyrin chromophore was incorporated to impart oxygen sensitivity. Organic solvent-based processing methods using 1,1,1,3,3,3-hexafluoro-2-propanol were used to fabricate: 1) silk-chromophore films with varied thickness and 2) silk-chromophore sponges with interconnected porosity. All compositions were biocompatible and exhibited photophysical properties with oxygen sensitivities (i.e., Stern-Volmer quenching rate constants of 2.7-3.2 x 104 M-1) useful for monitoring physiological tissue oxygen levels and for detecting deviations from normal behavior (e.g., hyperoxia). The potential to tune degradation time without significantly impacting photophysical properties was successfully demonstrated. Furthermore, the ability to consistently monitor tissue oxygenation in vivo was established via a multi-week rodent study. Histological assessments indicated successful tissue integration for the sponges, and this material format responded more quickly to various oxygen challenges than the film samples.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据