4.7 Article

Tannin-Assisted Synthesis of Nanocomposites Loaded with Silver Nanoparticles and Their Multifunctional Applications

期刊

BIOMACROMOLECULES
卷 24, 期 11, 页码 5194-5206

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.3c00737

关键词

-

向作者/读者索取更多资源

This study presents a robust method for the synthesis of Ag-based multifunctional nanocomposites using resin nanospheres as carriers. The resulting nanocomposites show promising applications in catalysis, nanomaterials, and biomedicine.
Nanocomposites have been widely used in many important areas due to their particular physical/chemical properties; however, just though a simple technology, endowing multiple functions into a single nanomaterial for realizing their multifunctional applications is still a challenge. Here, we report a robust method for the facile synthesis of Ag-based multifunctional nanocomposites via using tannin-coated phenol- formaldehyde resin nanospheres (TA-PFRN) as silver nanoparticle (Ag NP) carriers. The thickness of the tannin coating is readily tuned from 50 to 320 nm by regulating the concentration of tannin added. Under the optimal conditions, the TA-PFRN has a 23.8 wt % of Ag NPs loading capacity with only 17.2 nm Ag NP layers. Consequently, the novel TA-PFRN@Ag nanocomposites possess multiple functions and integrated characteristics. As catalysts, the catalytic efficiency of TA-PFRN@Ag is nearly 6 times higher than that of the PFRN@Ag. As highly effective free radical initiators, TA-PFRN@Ag nanocomposites can trigger ultrafast acrylic acid (AA)/acrylamide (AM) polymerization at room temperature (in only a few minutes). As nano-reinforced fillers, the addition of 0.04 wt % nanocomposites can improve the tensile strength of PVA film from 60 to 153.2 MPa. In addition, the nanocomposites can also serve as antibacterial agents, efficiently inhibiting the growth of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus); as antiultraviolet agents, the presence of TA-PFRN@Ag nanocomposites endows the film/hydrogel materials excellent ultraviolet (UV) shielding. This work provides a novel strategy for the green synthesis of Ag-based multifunctional nanocomposites that show promising applications in catalysis, nanomaterials, and biomedicine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据