4.7 Article

Improving the Performance of Poly(caprolactone)-Cellulose Acetate-Tannic Acid Tubular Scaffolds by Mussel-Inspired Coating

期刊

BIOMACROMOLECULES
卷 24, 期 9, 页码 4138-4147

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.biomac.3c00493

关键词

-

向作者/读者索取更多资源

This study demonstrates the use of biomimetic coating technology inspired by mussels to improve the blood compatibility of small-diameter artificial blood vessels. The researchers show that treating the scaffolds with different concentrations of Fe(III) solutions affects the fiber surface morphology and mechanical properties. The results suggest that the TA/Fe(III) coating can enhance the performance of artificial blood vessels.
Small-diameter artificial blood vessels are increasingly being used in clinical practice. However, these vessels are prone to thrombus, and it is necessary to improve blood compatibility. Surface coating is one of the commonly used methods in this regard. Inspired by the biomimicry of mussels, the use of deposition technology to obtain coating coverage on the surface of fibers has significantly piqued the interest of researchers recently. In this study, tubular scaffolds consisting of a composite of poly(caprolactone), cellulose acetate, and tannic acid (TA) were electrospun, and then the scaffolds were treated with different Fe(III) solutions (iron(III) chloride hexahydrate (FeCl3,6H(2)O)) to obtain four tubular scaffolds: F0, F5, F15, and F45. According to scanning electron microscopy (SEM) and field emission-SEM results, TA/Fe(III) complex is coated on the fiber of the scaffold after post-treatment; the fiber surface morphology changes with different Fe(III) concentrations. This provides designability to the performance of tubular scaffolds. The tensile strength of the F5 tubular scaffold (3.33 MPa) is higher than that of F45 (3.14 MPa), while the strain (83.9%) of the F45 tubular stent was 2.26 times that of the F5 (37.2%). In addition, cytotoxicity and antithrombotic performance were evaluated. The test results show that surface TA/Fe(III) coating treatment can affect the cytotoxicity and anticoagulation performance of the scaffold surface. The biomimetic TA/Fe(III) coating of mussels used in this study improves the performance of artificial blood vessels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据