4.5 Article

Biomimetic models of fish gill rakers as lateral displacement arrays for particle separation

期刊

BIOINSPIRATION & BIOMIMETICS
卷 18, 期 5, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.1088/1748-3190/acea0e

关键词

cross-flow filtration; cross-step filtration; filter feeding; suspension feeding; bump arrays; deterministic lateral displacement; microfluidics

向作者/读者索取更多资源

This study tested the function of fish gill rakers using 3D-printed conical models and computational fluid dynamics simulations. The experiments showed that particle movement in the fish gill raker models was consistent with the physical principles of lateral displacement arrays, providing new perspectives and metrics for analyzing filtration in fish.
Ram suspension-feeding fish, such as herring, use gill rakers to separate small food particles from large water volumes while swimming forward with an open mouth. The fish gill raker function was tested using 3D-printed conical models and computational fluid dynamics simulations over a range of slot aspect ratios. Our hypothesis predicting the exit of particles based on mass flow rates, dividing streamlines (i.e. stagnation streamlines) at the slots between gill rakers, and particle size was supported by the results of experiments with physical models in a recirculating flume. Particle movement in suspension-feeding fish gill raker models was consistent with the physical principles of lateral displacement arrays ('bump arrays') for microfluidic and mesofluidic separation of particles by size. Although the particles were smaller than the slots between the rakers, the particles skipped over the vortical region that was generated downstream from each raker. The particles 'bumped' on anterior raker surfaces during posterior transport. Experiments in a recirculating flume demonstrate that the shortest distance between the dividing streamline and the raker surface preceding the slot predicts the maximum radius of a particle that will exit the model by passing through the slot. This theoretical maximum radius is analogous to the critical separation radius identified with reference to the stagnation streamlines in microfluidic and mesofluidic devices that use deterministic lateral displacement and sieve-based lateral displacement. These conclusions provide new perspectives and metrics for analyzing cross-flow and cross-step filtration in fish with applications to filtration engineering.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据