4.5 Article

A Malassezia pseudoprotease dominates the secreted hydrolase landscape and is a potential allergen on skin

期刊

BIOCHIMIE
卷 216, 期 -, 页码 181-193

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.biochi.2023.09.023

关键词

-

向作者/读者索取更多资源

In this study, the gene expression of enzymes secreted by Malassezia globosa in the skin was investigated using targeted RNA sequencing. The study found that the expression of these enzymes is regulated by the fungus's environment and differs significantly from healthy skin sites. Additionally, a pseudoprotease MGL_3331 was identified to elicit an immune reaction in patients with atopic dermatitis. This highlights the importance of studying fungal proteins in physiologically relevant environments and their role in host immunity.
Malassezia globosa is abundant and prevalent on sebaceous areas of the human skin. Genome annotation reveals that M. globosa possesses a repertoire of secreted hydrolytic enzymes relevant for lipid and protein metabolism. However, the functional significance of these enzymes is uncertain and presence of these genes in the genome does not always translate to expression at the cutaneous surface. In this study we utilized targeted RNA sequencing from samples isolated directly from the skin to quantify gene expression of M. globosa secreted proteases, lipases, phospholipases and sphingomyelinases. Our findings indicate that the expression of these enzymes is dynamically regulated by the environment in which the fungus resides, as different growth phases of the planktonic culture of M. globosa show distinct expression levels. Furthermore, we observed significant differences in the expression of these enzymes in culture compared to healthy sebaceous skin sites. By examining the in situ gene expression of M. globosa's secreted hydrolases, we identified a predicted aspartyl protease, MGL_3331, which is highly expressed on both healthy and disease-affected dermatological sites. However, molecular modeling and biochemical studies revealed that this protein has a non-canonical active site motif and lacks measurable proteolytic activity. This pseudoprotease MGL_3331 elicits a heightened IgE-reactivity in blood plasma isolated from patients with atopic dermatitis compared to healthy individuals and invokes a pro-inflammatory response in peripheral blood mononuclear cells. Overall, our study highlights the importance of studying fungal proteins expressed in physiologically relevant environments and underscores the notion that secreted inactive enzymes may have important functions in influencing host immunity. (c) 2023 Elsevier B.V. and Societe Francaise de Biochimie et Biologie Moleculaire (SFBBM). All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据