4.5 Article

Hsc70 phosphorylation patterns and calmodulin regulate AP2 Clathrin-Coated-Vesicle life span for cell adhesion protein transport

出版社

ELSEVIER
DOI: 10.1016/j.bbamcr.2023.119611

关键词

AP2; Calmodulin; Clathrin; Hsc70; Kinases; Synapse

向作者/读者索取更多资源

AP2 forms AP2 CCV with clathrin and other coat proteins, and synapses contain different types of CCV. The stability and composition of CCV are regulated by various factors, including Hsc70 and phosphorylation patterns. The knockout of the AP1/O1B complex disrupts synaptic vesicle recycling and endosomal protein sorting, leading to upregulation of endocytosis. Stable CCV, termed stCCV, have distinct characteristics and specialized functions in synaptic plasticity. The phosphorylation of Hsc70 and the levels of kinases play a crucial role in regulating the stability and disassembly of clathrin in CCV.
AP2 forms AP2 CCV with clathrin and over 60 additional coat proteins. Due to this complexity, we have a limited understanding of CCV life cycle regulation. Synapses contain canonical AP2 CCV, canCCV, and more stable, thereby longer lived, AP2 CCV. The more stable AP2 CCV can be distinguished from canCCV due to the stable binding of Hsc70 to clathrin. The AP1/O1B complex knockout leads to impaired synaptic vesicle recycling and altered endosomal protein sorting. This causes as a secondary phenotype the twofold upregulation of endocytosis by canCCV and by more stable AP2 CCV. These stable CCV are more stabilized than their wt counterpart, hence stCCV. They have less of the uncoating proteins synaptojanin1 and Hsc70, and more of the coat stabilizing AAK1. Hsc70 clathrin dissociation activity is regulated by complex phosphorylation patterns. Two major groups of hyper- and of hypo-phosphorylated Hsc70 proteins are formed. The latter are enriched in wt stable CCV and stabilized stCCV. Hsc70 T265 phosphorylation regulates binding of CaM/Ca2+. CaM/Ca2+ binding to the T265 domain blocks Hsc70 homodimerization and its concentration in stCCV required for clathrin disassembly. Kinases DYRK1A and CaMK-II delta can phosphorylate T265 preventing CaM/Ca2+ binding. Their and the levels of STK38L and STK39/Cab39, which are able to phosphorylate additional Hsc70 residues are reduced in stCCV. The stCCV pathway sorts specifically the cell adhesion proteins CHL1 and Neurocan, supporting our model of that the stCCV pathway fulfills specific functions in synaptic plasticity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据