4.6 Article

The NANOGrav 15 yr Data Set: Detector Characterization and Noise Budget

期刊

ASTROPHYSICAL JOURNAL LETTERS
卷 951, 期 1, 页码 -

出版社

IOP Publishing Ltd
DOI: 10.3847/2041-8213/acda88

关键词

-

向作者/读者索取更多资源

Pulsar timing arrays (PTAs) are galactic-scale gravitational wave (GW) detectors, using millisecond pulsars and radio telescopes. They can be used to extract low-frequency GW signals, providing sensitivity to multiple classes of GW signals.
Pulsar timing arrays (PTAs) are galactic-scale gravitational wave (GW) detectors. Each individual arm, composed of a millisecond pulsar, a radio telescope, and a kiloparsecs-long path, differs in its properties but, in aggregate, can be used to extract low-frequency GW signals. We present a noise and sensitivity analysis to accompany the NANOGrav 15 yr data release and associated papers, along with an in-depth introduction to PTA noise models. As a first step in our analysis, we characterize each individual pulsar data set with three types of white-noise parameters and two red-noise parameters. These parameters, along with the timing model and, particularly, a piecewise-constant model for the time-variable dispersion measure, determine the sensitivity curve over the low-frequency GW band we are searching. We tabulate information for all of the pulsars in this data release and present some representative sensitivity curves. We then combine the individual pulsar sensitivities using a signal-to-noise ratio statistic to calculate the global sensitivity of the PTA to a stochastic background of GWs, obtaining a minimum noise characteristic strain of 7 x 10(-15) at 5 nHz. A power-law-integrated analysis shows rough agreement with the amplitudes recovered in NANOGrav's 15 yr GW background analysis. While our phenomenological noise model does not model all known physical effects explicitly, it provides an accurate characterization of the noise in the data while preserving sensitivity to multiple classes of GW signals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据