4.6 Article

The ESO UVES/FEROS Large Programs of TESS OB pulsators I. Global stellar parameters from high-resolution spectroscopy

期刊

ASTRONOMY & ASTROPHYSICS
卷 676, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202346108

关键词

stars: fundamental parameters; stars: massive; stars: early-type; stars: rotation; asteroseismology; stars: oscillations

向作者/读者索取更多资源

Studying a large sample of O- and B-type stars to obtain accurate atmospheric parameters and investigate line-profile broadening, which can improve our understanding of their interior structure.
Context. Modern stellar structure and evolution theory suffers from a lack of observational calibration for the interior physics of intermediate- and high-mass stars. This leads to discrepancies between theoretical predictions and observed phenomena that are mostly related to angular momentum and element transport. Analyses of large samples of massive stars connecting state-of-the-art spectroscopy to asteroseismology may provide clues as to how to improve our understanding of their interior structure.Aims. We aim to deliver a sample of O- and B-type stars at metallicity regimes of the Milky Way and the Large Magellanic Cloud (LMC) galaxies with accurate atmospheric parameters from high-resolution spectroscopy, along with a detailed investigation of line-profile broadening, both for the benefit of future asteroseismic studies.Methods. After describing the general aims of our two Large Programs, we develop a dedicated methodology to fit spectral lines and deduce accurate global stellar parameters from high-resolution multi-epoch UVES and FEROS spectroscopy. We use the best available atmosphere models for three regimes covered by our global sample, given its breadth in terms of mass, effective temperature, and evolutionary stage.Results. Aside from accurate atmospheric parameters and locations in the Hertzsprung-Russell diagram, we deliver detailed analyses of macroturbulent line broadening, including estimations of the radial and tangential components. We find that these two components are difficult to disentangle from spectra with signal-to-noise ratios of below 250.Conclusions. Future asteroseismic modelling of the deep interior physics of the most promising stars in our sample will provide much needed information regarding OB stars, including those of low metallicity in the LMC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据