4.6 Article

Chemistry of multiple stellar populations in the mono-metallic, in situ, bulge globular cluster NGC 6388

期刊

ASTRONOMY & ASTROPHYSICS
卷 677, 期 -, 页码 -

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361/202346174

关键词

stars: abundances; stars: atmospheres; stars: Population II; globular clusters: general; globular clusters: individual: NGC 6388

向作者/读者索取更多资源

We present the abundance analysis of 185 giants in the bulge globular cluster NGC 6388, showing that a single class of polluters can explain the anti-correlations among light elements. The abundance pattern of other elements in NGC 6388 is similar to bulge field stars, ruling out an accreted origin. The neutron-capture elements show overall uniformity, with a scatter in the [Zr/Fe] ratio correlated to Na and Al abundances.
We present the homogeneous abundance analysis for a combined sample of 185 giants in the bulge globular cluster (GC) NGC 6388. Our results are used to describe the multiple stellar populations and differences or analogies with bulge field stars. Proton-capture elements indicate that a single class of first-generation polluters is sufficient to reproduce both the extreme and intermediate parts of the anti-correlations among light elements O, Na, Mg, and Al, which is at odds with our previous results based on a much smaller sample. The abundance pattern of other species in NGC 6388 closely tracks the trends observed in bulge field stars. In particular, the a-elements, including Si, rule out an accreted origin for NGC 6388, confirming our previous results based on iron-peak elements, chemo-dynamical analysis, and the age-metallicity relation. The neutron-capture elements are generally uniform, although the [Zr/Fe] ratio shows an intrinsic scatter, correlated to Na and Al abundances. Instead, we do not find enhancement in neutron-capture elements for stars whose photometric properties would classify NGC 6388 as a type II GC. Together with the homogeneity in [Fe/H] we found in a previous paper, this indicates we need to better understand the criteria to separate classes of GCs, coupling photometry, and spectroscopy. These results are based on abundances of 22 species (O, Na, Mg, Al, Si, Ca, Ti, Sc, V, Cr, Mn, Fe, Co, Ni, Zn, Y, Zr, Ba, La, Ce, Nd, and Eu) from UVES spectra sampling proton-, a-, neutron-capture elements, and Fe-peak elements. For 12 species, we also obtain abundances in a large number of giants (up to 150) from GIRAFFE spectra.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据