4.7 Article

Nuclear and morpho-histopathological alterations in Astyanax altiparanae exposed to effluent from the process of anodizing aluminum

期刊

AQUATIC TOXICOLOGY
卷 262, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.aquatox.2023.106637

关键词

Ecotoxicology; Biomonitoring; Erythrocytic nuclear alterations; Branchial lesions; Lambari

向作者/读者索取更多资源

This study evaluated the toxicity of effluents on Astyanax altiparanae (Lambari) through the assessment of somatic, genetic, morphological, and histological markers. The results showed that the effluents had effects on the growth and liver index of the individuals, as well as significant changes in the gill structure and function.
Aluminum is a metal widely used from household utensils to civil construction. Anodizing aluminum is a procedure to form a thick layer of aluminum oxide on the surface in order to confer greater resistance to the material. This process generates an effluent with acidic pH and a high concentration of sulfate. Alternatives for the treatment of this effluent involve the use of the chemical precipitation technique, which can be used with salts of barium chloride (BaCl2), calcium chloride (CaCl2), and aluminum hydroxide with commercial limestone (Cc/Al (OH)3). The objective of this study was to evaluate the toxicity of effluents on Astyanax altiparanae (Lambari), by means of somatic, genetic, morphological, and histological markers after 24 and 96 h of exposure. After measuring the biometric data of the animals and the weight of the liver, we found that the condition factor (K) of individuals exposed to the effluent CaCl2 showed a slight reduction in growth after 96 h while the hepatosomatic index (HSI) remained unchanged for all effluents in both sampling times. The micronucleus test with erythrocytes indicated that the raw effluent (E2) induced nuclear changes after 24 h; however, this effect did not persist after 96 h of exposure. Branchial arches were collected and according to Bernet's index for histopathology, all effluents except Cc/Al (OH)(3), induced significant changes in the gills. In accordance with the index of Poleksic and Mitrovic-Tutundzic, CaCl2 was the only effluent to compromise branchial operation. The branchial morphology investigated by SEM showed that the raw effluent (E1) induced injuries and compromised gill functions. This study reinforces the importance of biological tests for the assessment and validation of physical chemicals used and effluent treatment techniques as well as the development and application of biological parameters before the wastewater release, whether in a raw state or a treated one.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据